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Abstract—This paper considers Lurie systems composed of an unknown linear subsystem and
unknown nonlinear functions belonging to given sectors. For such systems, a method is devel-
oped to design an optimal absolutely stabilizing control law based on experimental data and a
priori information. The method involves the minimax approach in which an integral quadratic
performance index is maximized at the intersection of two matrix ellipsoidal sets selected from
experimental data and a priori information. The simulation results of a nonlinear oscillator
show the advantage of the obtained control law over the classical robust controller designed
based on a priori information.
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1. INTRODUCTION

Nonlinear Lurie systems consist of unknown linear subsystems and unknown nonlinear functions
belonging to given sectors [1]. In this paper, we construct control laws for this class of systems
using the control design methods for unknown linear dynamic systems developed in [2–4]. The
absence of any mathematical model of the controlled system is compensated here by measurement
data of the system trajectory on a finite horizon and some a priori information. In this case,
the identification problem is not solved for the system, and the control objective is achieved even
under non-identifiability conditions. These methods involve the minimax robust control design
approach in which the guaranteed value of the performance index is found for any system from
some uncertainty set. In contrast to classical robust controllers (e.g., see the review [5]), where this
set is chosen based on only a priori information, here the uncertainty set is separated by using both
experimental data and a priori information. As a result, one obtains a control law with a much
smaller guaranteed value of the performance index; see below.

In recent time, the use of experimental information for the direct design of control laws has
received much attention; for example, see [6–8] and the bibliography provided in [2–4]. These re-
search works mainly addressed control laws for linear systems. To the authors’ best knowledge, the
paper [9] is currently the only one devoted to experimental data-based control design for systems
with a nonlinear vector function satisfying a quadratic inequality. According to the assumptions
made in [9], there are no disturbances during the experiment and the control law ensures the so-
called persistent excitation condition, necessary for the identifiability of the unknown parameters.
Furthermore, the dimension of the variables in the linear matrix inequalities (LMIs) for computing
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100 KOGAN, STEPANOV

the controller parameters grows with the number of measurements, which complicates control law
implementation. In contrast, the approach discussed below covers systems with several nonlinear
sector functions, considers disturbances during the experiment, and requires no system identifia-
bility; in addition, the dimensions of the variables are determined only by those of the state and
control vectors and do not depend on the number of measurements.

2. PROBLEM STATEMENT

Consider a controlled uncertain nonlinear Lurie system consisting of a linear subsystem of the
form

∂x(t) = Ax(t) +Bu(t) + Fv(t),

z(t) = Cx(t) +Du(t)
(2.1)

closed by a nonlinear continuous vector function of the form

v(t) = ϕ(y(t), t), y(t) = LTx(t), (2.2)

with the following notations: ∂ stands for the differentiation operator in the continuous-time case or
the shift operator in the discrete-time case; x(t)∈Rnx is the state vector; y(t)∈Rny is the output;
u(t)∈Rnu is the control vector (input); z(t)∈Rnz is the performance output; finally, ϕ(y, t)∈Rny

is an unknown vector function such that ϕ(0, t) ≡ 0. For all t � 0, each component ϕi(yi, t) of the
function (2.2) is located in a corresponding finite sector [αi, βi], i.e.,

αi �
ϕi(yi, t)

yi
� βi, i = 1, . . . , ny. (2.3)

By assumption, the system matrices A, B, and F are unknown and the initial state x(0) = x0
is uncertain. The problem statement will be further refined; generally speaking, it is required to
design linear state-feedback controllers u(t) = Θx(t) based on a priori information and experimental
data under which the closed loop system will be absolutely stable, i.e., the trivial equilibrium x = 0
of system (2.1), (2.2) will be asymptotically stable for all functions ϕ(y, t) from the specified class,
and the transient will satisfy the following upper bound under arbitrary initial conditions:

sup
x0 �=0

‖z‖2
xT0 R

−1x0
< γ2, (2.4)

where R = RT > 0 is a weight matrix and ‖ξ‖2 =
∑∞

t=0 |ξ(t)|2 in the continuous-time case or ‖ξ‖2 =∫∞
t=0 |ξ(t)|2 dt in the discrete-time case.

3. EXPERIMENTAL DATA AND A PRIORI INFORMATION

Information about the unknown parameters of system (2.1) is extracted from a finite set of
measurements of its trajectory. Let a disturbance w(t) affect the system during an experiment so
that the system equations take the form

∂x(t) = Ax(t) +Bu(t) + Fv(t) +Bww(t),

z(t) = Cx(t) +Du(t).
(3.1)

Suppose that in the experiment preceding the control design procedure, it is possible to measure
the values of the system’s nonlinear function belonging to given sectors. In the discrete-time
case, there are available measurements of the state and nonlinear function, x0, x1, . . . , xN and
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OPTIMAL ABSOLUTE STABILIZATION OF UNKNOWN LURIE SYSTEMS 101

ϕ(y0, 0), . . . , ϕ(yN−1, N − 1), respectively, under chosen controls u0, . . . , uN−1 and some unknown
disturbances w0, . . . , wN−1. We compile the matrices

X = (x0 · · · xN−1) , X+ = (x1 · · · xN ) , U = (u0 · · · uN−1) ,

Φ = (ϕ(y0, 0) · · ·ϕ(yN−1, N − 1) , W = (w0 · · ·wN−1) .

In the continuous-time case, there are available measurements of the state, its derivative, and
nonlinear function, x(t0), . . . , x(tN−1), ẋ(t0), . . . , ẋ(tN−1), and ϕ(y(t0), t0), . . . , ϕ(y(tN−1), tN−1),
respectively, at time instants t0, . . . , tN−1 under chosen controls u(t0), . . . , u(tN−1) and some un-
known disturbances w(t0), . . . , w(tN−1). We compile the matrices

X = (x(t0) · · · x(tN−1)) , X+ = (ẋ(t0) · · · ẋ(tN−1)) , U = (u(t0) · · · u(tN−1)) ,

Φ = (ϕ(y(t0), t0) · · ·ϕ(y(tN−1), tN−1)) , W = (w(t0) · · ·w(tN−1)) .

In both cases, the experimental data matrices satisfy the relations

X+ = ArealX +BrealU + FrealΦ+BwW, (3.2)

where Areal, Breal, and Freal are the real unknown system matrices. With the notations

Δreal = (Areal Breal Freal) , X̂ = col (X,U,Φ) ,

equations (3.2) can be written as the linear matrix regression

X+ = ΔrealX̂ + Ŵ , Ŵ = BwW. (3.3)

Assume that the disturbances, which also include the approximate calculation errors of the
derivatives, satisfy the condition

Ŵ ŴT � Ω. (3.4)

In particular, if ‖w(t)‖∞ � dw for all t and a given value dw (the error level), then Ω = d2wnwNBwB
T
w .

In the case
∑N−1

i=0 |w(ti)|2 � ν2 (the total “energy” of the disturbances is bounded above during
the experiment), we have Ω = ν2BwB

T
w .

Let us define the set Δp of all matrices Δ of dimensions nx × (nx + nu + ny) that could generate

the experimental matrices Φ, Φ+, and Z under the chosen controls U and some admissible errors Ŵ
satisfying the constraint (3.4). For these matrices, equality (3.3) must hold under some matrix Ŵ
satisfying (3.4). Hence,

Δp =
{
Δ : X+ = ΔX̂ + Ŵ , Ŵ ŴT � Ω

}
,

and Δ∈Δp iff

(X+ −ΔX̂)(X+ −ΔX̂)T � Ω. (3.5)

It is obvious that Δreal ∈Δp. For further use, we represent this last inequality as

(Δ I)Ψ(1) (Δ I)T � 0, (3.6)

where the symmetric matrix Ψ(1) of order 2nx + nu + ny is partitioned into appropriate blocks Ψ
(1)
ij ,

i, j = 1, 2, as follows:

Ψ(1) =

⎛⎜⎝ X̂X̂T | 	
−−− −−− −−−
−X+X̂

T | X+X
T
+ − Ω

⎞⎟⎠ . (3.7)

Thus, the set of all matrices Δ consistent with the experimental data satisfies inequality (3.6).
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Generally speaking, the setΔp is unbounded. To establish its boundedness conditions, we denote
by Im(·), Ker(·), span(·), and rank(·) the image, kernel, linear column subspace, and column rank of
an appropriate matrix, respectively. Under the assumption rank X̂ = s � min{nx + nu + ny, N},
the matrix X̂ admits the singular decomposition [10]

X̂ = (M1 M2)

(
Σ 0s×(N−s)

0(nx+nu+ny)×s 0(nx+nu+ny)×(N−s)

)(
GT

1

GT
2

)
=M1ΣG

T
1 ,

M1 ∈R(nx+nu+ny)×s, M2 ∈R(nx+nu+ny)×(nx+nu+ny−s), M = (M1 M2) ,

(3.8)

where Σ = diag(λ1, . . . , λs) > 0, λi are the eigenvalues of the information matrix X̂X̂T, spanM1 =
Im X̂, spanM2 = Ker X̂T, spanG1 = Im X̂T, spanG2 = Ker X̂, and MTM = I. Choosing the or-
thonormal basis of the columns of the matrix M, we introduce the corresponding variables

Δ̂ = Δ (M1 M2) =
(
Δ̂(1) Δ̂(2)

)
, Δ̂(1) ∈Rnx×s, Δ̂(2) ∈Rnx×(nx+nu+ny−s)

and denote X̂(1) = MT
1 X̂ = ΣGT

1 . In the new variables, the linear matrix regression (3.3) takes the
form

X+ = Δ̂
(1)
realX̂

(1) + Ŵ , (3.9)

where the matrix X̂(1) of dimensions (s×N) has a full column rank, and Δ̂
(1)
real is the “projection”

of the matrix Δ̂real into the subspace Im X̂, i.e., its rows Δ̂
(1)
real are the projections of the rows of

the matrix Δ̂real into the subspace Im X̂.

Lemma 3.1. The set Δp of all matrices consistent with the experimental data X̂ = col (X,U,Φ)
that satisfy (3.8) is an unbounded degenerate “matrix ellipsoid” given by

(Δ̂(1) − Δ̂
(1)
LS)Σ

2(Δ̂(1) − Δ̂
(1)
LS)

T � Γ, Δ̂(2) ∈Rnx×(nx+nu+ny−s), (3.10)

where

Γ = Ω +X+[X̂
(1)TΣ−2X̂(1) − I]XT

+ � 0, (3.11)

and Δ̂
(1)
LS = X+X̂

(1)TΣ−2 is the least-squares estimate of the matrix Δ̂
(1)
real in (3.9).

Corollary 3.1. The set Δp is bounded iff the rank condition

rank

⎛⎜⎝ X
U
Φ

⎞⎟⎠ = nx + nu + ny (3.12)

holds. In this case, the set Δp consists of the matrices given by inequality (3.10) in which Δ̂(1) = Δ̂

and Δ̂
(1)
LS = Δ̂LS.

The proof of Lemma 3.1 is provided in the Appendix. By this lemma, in the general case, only

the projection Δ̂
(1)
real of the unknown matrix into the subspace Im X̂ can be identified from the

obtained data. Under the rank condition (3.12), the matrix Δreal in (3.3) is identifiable, and the
matrix ellipsoid and the set Δp are bounded. Note that the rank condition (3.12) holds only if the
number of measurements is not smaller than the sum of the dimensions of the state, output, and
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Fig. 1. The set Δset of all unknown parameters Δ consistent with experimental data and a priori information.

control vectors: N � nx + nu + ny. The robust control design procedure considered in this paper
does not require the rank condition, and the number of measurements can therefore be less than
nx + nu + ny.

Now let there exist additional information that the unknown matrix Δreal satisfies the constraint

(Δ−Δ∗)(Δ−Δ∗)T � ρ2I, Δ∗ = (A∗B∗ F∗) , (3.13)

where the matrix Δ∗ contains the corresponding ones of the nominal system and the parameter ρ
characterizes the size of the uncertainty domain. We write this inequality as

(Δ I)Ψ(2) (Δ I)T � 0, (3.14)

where the matrix Ψ(2) consists of the blocks Ψ
(2)
ij , i, j = 1, 2, and has the form

Ψ(2) =

⎛⎜⎝ I | 	
−−− −−− −−−
−Δ∗ | Δ∗ΔT∗ − ρ2I

⎞⎟⎠ . (3.15)

We introduce the following notations: Δa is the set of all matrices Δ satisfying inequality (3.14),
and Δset = Δp

⋂
Δa is the set of all matrices Δ satisfying inequalities (3.6) and (3.14). Obvi-

ously, Δreal ∈Δset. Figure 1 illustrates a possible arrangement of the sets Δp and Δa and their
intersection Δset.

In the current notations, the optimal absolute stabilization problem of the unknown Lurie sys-
tem (2.1) can be formulated as follows: it is required to design, directly from input and state
measurements, a state-feedback controller u = Θx under which, for all systems whose matrices are
consistent with the a priori information and experimental data and whose nonlinear functions be-
long to the given sectors (2.3), the closed loop system will be absolutely stable and the performance
index J(Θ) will be bounded above by a given constant:

J(Θ) = sup
Δ∈Δset

sup
ϕ(y, t)

sup
x0 �=0

‖z‖2
xT0 R

−1x0
< γ2. (3.16)

4. PRELIMINARY TRANSFORMATIONS AND AUXILIARY STATEMENTS

Consider the class of Lurie systems in which the components of the vector function ϕ(y, t)
satisfy condition (2.3). Before proceeding to the problem solution, we make some transformations
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to simplify the further presentation. Let us introduce a vector function ϕ̂(y, t) with the components

ϕ̂i(yi, t) =
1

βi − αi
[ϕi(yi, t)− αiyi], i = 1, . . . , ny. (4.1)

Then equations (2.1) and (2.2) take the form

∂x(t) = (A+ FΛ1L
T)x(t) +Bu(t) + FΛ2v̂(t),

z(t) = Cx(t) +Du(t),
(4.2)

where Λ1 = diag(α1, . . . , αny), Λ2 = diag(β1 − α1, . . . , βny − αny), and

v̂ = ϕ̂(y, t), y = LTx, (4.3)

while the functions ϕ̂i(yi, t) satisfy the constraints (2.3) for αi = 0 and βi = 1, i = 1, . . . , ny, i.e.,
belong to the sector [0, 1].

We show that a Lyapunov function ensuring the absolute stability of the Lurie system with the
guaranteed value of the quadratic performance index can be found by solving the corresponding
worst-case disturbance problem in the linear system; for details, see [11]. Namely, for the Lurie
system

∂x(t) = Ax(t) + Fv(t),

z(t) = Cx(t),
(4.4)

v(t) = ϕ(y(t), t), y(t) = LTx(t), (4.5)

with a stable matrix A and a vector function ϕ(y, t) whose components lie in the sector [0, 1], we
have the following result.

Lemma 4.1. Assume that along the trajectories of the linear discrete- or continuous-time sys-
tem (4.4), a function V (x) = xTY x with 0 < Y = Y T < γ2R−1 satisfies the inequality

�V + |z|2 − vTΓ−1(v − LTx) < 0, V̇ + |z|2 − vTΓ−1(v − LTx) < 0, (4.6)

where Γ = diag(γ1, . . . , γny) > 0, for all x and v (|x|2 + |v|2 �= 0). Then the function V (x) ensures
the absolute stability of the Lurie system (4.4), (4.5) and, in addition, ‖z‖2 < γ2xT0 R

−1x0.

Remark 1. With the change of variables v̂ = Γ−1/2(v − 1
2L

Tx) and the performance output ẑ =

col(C, 12Γ
−1/2LT)x, equations (4.4) become

∂x(t) =

(
A+

1

2
FLT

)
x(t) +FΓ1/2v̂(t),

ẑ(t) =

⎛⎜⎝ C

1

2
Γ−1/2LT

⎞⎟⎠x(t),

(4.7)

where A+ 1
2FLT is a Hurwitz matrix, and inequality (4.6) turns into V̇ + |ẑ|2 − |v̂|2 < 0. Due to

Y < γ2R−1, this inequality is equivalent to the condition

sup
x0, v̂

‖ẑ‖2
xT0 γ

2R−1x0 + ‖v̂‖2 < 1.
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OPTIMAL ABSOLUTE STABILIZATION OF UNKNOWN LURIE SYSTEMS 105

This means that the generalized H∞ norm from the input v̂ to the output ẑ of system (4.7)
with the weight matrix γ−2R is smaller than 1. As is easily checked, in the case of one nonlinearity
(z ≡ 0), the resulting frequency condition ‖H‖∞ < 1 is equivalent to the circle criterion for absolute
stability [12].

The next auxiliary statement characterizes the generalized H∞ norm of a linear stable system

∂x(t) = Ax(t) + Bv(t),
z(t) = Cx(t) (4.8)

in terms of the dual system.

Lemma 4.2 [3]. The generalized H∞ norm of system (4.8) with a weight matrix R > 0 is smaller
than 1 iff there exists a positive definite quadratic form Vd(xd) = xTd Pxd with P > R such that

�Vd + |zd|2 − |vd|2 < 0, V̇d + |zd|2 − |vd|2 < 0 (4.9)

along the trajectories of the dual system

∂xd(t) = ATxd(t) + CTvd(t),

zd(t) = BTxd(t)
(4.10)

for all xd and vd (|xd|2 + |vd|2 �= 0).

Remark 2. The matrices of the quadratic forms V (x) = xTY x and Vd(xd) = xTd Pxd of the primal
and dual systems are related by P = Y −1.

Summarizing the above auxiliary statements and remarks, we arrive at the following result.

Theorem 4.1. The closed-loop Lurie system (2.1)–(2.3) with given matrices A, B, and F and
the state-feedback controller u = Θx is absolutely stable and the performance index (2.4) is bounded
above by a given constant γ2 if the generalized H∞ norm from the input v to the output z of the
linear system

∂x(t) = (A+BΘ+ FΛLT)x(t) + FΛ2Γ
1/2v(t),

z(t) =

⎛⎝ C +DΘ

1

2
Γ−1/2LT

⎞⎠x(t),
(4.11)

with the weight matrix γ−2R and Λ = Λ1 +
1
2Λ2 is smaller than 1.

Corollary 4.1. In view of Lemma 4.2, the closed-loop Lurie system (2.1)–(2.3) is absolutely stable
and the upper bound (2.4) holds if there exists a function V (xd) = xTd Pxd with P = PT > γ−2R
satisfying inequality (4.9) along the trajectories of the linear system

∂xd(t) = (A+BΘ+ FΛLT)Txd(t) +

⎛⎝ C +DΘ

1

2
Γ−1/2LT

⎞⎠T

vd(t),

zd(t) = Γ1/2Λ2F
Txd(t).

(4.12)
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For system (4.12), inequality (4.9) can be written as an LMI, and we get another result.

Corollary 4.2. System (2.1)–(2.3) with given matrices A, B, and F is absolutely stable and the
upper bound (2.4) holds under the control law u = Θx, where Θ = QP−1 and P = PT > 0, Q,
Γ = diag(γ1, . . . , γny) > 0, and γ2 > 0 satisfy the following LMIs:

—in the discrete-time case,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−P 	 	 	

AP +BQ+ FΛLTP −P + FΛ2ΓΛ2F
T 	 	

CP +DQ 0 −I 	

1

2
LTP 0 0 −Γ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(
P 	
I γ2R−1

)
> 0;

(4.13)

—in the continuous-time case,

⎛⎜⎜⎜⎜⎝
AP +PAT+BQ+QTBT+FΛLTP +PLΛFT+FΛ2ΓΛ2F

T 	 	

CP +DQ −I 	

1

2
LTP 0 −Γ

⎞⎟⎟⎟⎟⎠ < 0,

(
P 	

I γ2R−1

)
> 0.

(4.14)

5. THE DESIGN PROCEDURE OF OPTIMAL ABSOLUTELY
STABILIZING CONTROLLERS

Now we write the equations of the closed-loop unknown system (2.1)–(2.3) in the form

∂x(t) = (A+BΘ+ FΛ1L
T)x(t) + FΛ2v̂(t),

z(t) = (C +DΘ)x(t),
(5.1)

v̂ = ϕ̂(y, t), y = LTx, (5.2)

where the components of the vector function ϕ̂(y, t) are given by (4.1) and belong to the sector [0, 1].
In the theorem below, the parameters of the linear state-feedback controllers ensuring the absolute
stability of the unknown nonlinear Lurie system and the guaranteed value of the performance index
are expressed in terms of experimental data and a priori information.

Theorem 5.1. The Lurie system (2.1)–(2.3) with the state-feedback controller u = Θx is abso-
lutely stable and the performance index (3.16) is bounded above, J(Θ) < γ2, if Θ = QP−1, where
P = PT > 0, Q, Γ = diag(γ1, . . . , γny) > 0, γ2 > 0, μ1 � 0, and μ2 � 0 satisfy the following LMIs:
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OPTIMAL ABSOLUTE STABILIZATION OF UNKNOWN LURIE SYSTEMS 107

—in the discrete-time case,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P 	 	 	⎛⎜⎝ P

Q

ΛLTP

⎞⎟⎠ Λ̂2ΓΛ̂
T
2 −

2∑
k=1

μkΨ
(k)
11 	 	

0 −
2∑

k=1

μkΨ
(k)
21 −P −

2∑
k=1

μkΨ
(k)
22 	

⎛⎝C D 0

0 0
1

2
I

⎞⎠
⎛⎜⎝ P

Q

LTP

⎞⎟⎠ 0 0 −
(
I 	

0 Γ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(
P 	

I γ2R−1

)
> 0;

(5.3)

—in the continuous-time case,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ̂2ΓΛ̂
T
2 −

2∑
k=1

μkΨ
(k)
11 	 	

⎛⎝ P
Q

ΛLTP

⎞⎠T

−
2∑

k=1

μkΨ
(k)
21 −

2∑
k=1

μkΨ
(k)
22 	

0

(
C D 0

0 0
1

2
I

)⎛⎝ P
Q

LTP

⎞⎠ −
(
I 	
0 Γ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(
P 	
I γ2R−1

)
> 0.

(5.4)

Here, Λ̂2 = col(0, 0,Λ2), and Ψ
(k)
ij are the corresponding blocks of the matrices Ψ(1) and Ψ(2) given

by (3.7) and (3.15), respectively.

Proof of Theorem 5.1. By Theorem 4.1, system (5.1), (5.2) is absolutely stable and J(Θ) < γ2

if the generalized H∞ norm from the input v to the output z of the linear system (4.11) with the
weight matrix γ−2R is smaller than 1. In turn, this condition holds iff the generalized H∞ norm of
the dual system (4.12) is smaller than 1 (Lemma 4.2). Using the notations introduced above, we
represent equations (4.12) as

∂xd(t) =

⎛⎜⎝ I
Θ

ΛLT

⎞⎟⎠
T ⎡⎢⎣ΔTxd(t) +

⎛⎜⎝ CT 0
DT 0

0 1
2Λ

−1Γ−1/2

⎞⎟⎠ vd(t)

⎤⎥⎦ ,

zd(t) = Γ1/2Λ̂T
2 Δ

Txd(t).

(5.5)
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Consider an augmented system with the additional artificial input wΔ(t)∈L2 and output zΔ(t)
described by the equations

∂xa(t) =

⎛⎜⎝ I
Θ

ΛLT

⎞⎟⎠
T ⎡⎢⎣wΔ(t) +

⎛⎜⎝ CT 0
DT 0

0 1
2Λ

−1Γ−1/2

⎞⎟⎠ va(t)

⎤⎥⎦ ,

za(t) = Γ1/2Λ̂T
2 wΔ(t), zΔ(t) = xa(t).

(5.6)

Note that for wΔ(t) = ΔTzΔ(t), equations (5.6) coincide with (5.5). Suppose that for all t � 0, the
additional input and output signals in system (5.6) satisfy the two inequalities(

wΔ(t)
zΔ(t)

)T

Ψ(1)

(
wΔ(t)
zΔ(t)

)
� 0,

(
wΔ(t)
zΔ(t)

)T

Ψ(2)

(
wΔ(t)
zΔ(t)

)
� 0, (5.7)

where the matrices Ψ(1) and Ψ(2) are given by (3.7) and (3.15). Let WΔ denote the set of all such
signals wΔ(t). Given wΔ(t) = ΔTzΔ(t), for all Δ∈Δ, from (3.6) and (3.14) it follows that(

wΔ(t)
zΔ(t)

)T

Ψ(1)

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
ΔT

I

)T

Ψ(1)

(
ΔT

I

)
zΔ(t) � 0,

(
wΔ(t)
zΔ(t)

)T

Ψ(2)

(
wΔ(t)
zΔ(t)

)
= zTΔ(t)

(
ΔT

I

)T

Ψ(2)

(
ΔT

I

)
zΔ(t) � 0.

Thus, wΔ(t) = ΔTzΔ(t)∈WΔ and, consequently, for Δ∈Δ system (5.5) is “immersed” in the
augmented system (5.6), (5.7).

The proof below is for the continuous-time case: in the discrete-time one, it can be repeated
by analogy. We establish conditions for the existence of a positive definite quadratic function
V (xa) = xTa Pxa with P > γ−2R that satisfies, for all xa and va (|xa|2 + |va|2 �= 0), the inequality

V̇ + |za|2 − |va|2 < 0 (5.8)

along the trajectories of the augmented system (5.6) for all wΔ(t) with (5.7).

By the S-procedure, a sufficient condition is the existence of a function V (xa) = xTa Pxa with
P > γ−2R that satisfies, for all xa, va, and wΔ (|xa|2 + |va|2 + |wΔ|2 �= 0) and some μ1, μ2 � 0, the
inequality

V̇ + |za|2 − |va|2 −
2∑

k=1

μk

(
wΔ

zΔ

)T

Ψ(k)

(
wΔ

zΔ

)
< 0 (5.9)

along the trajectories of the augmented system (5.6).

This inequality reduces to an inequality for a quadratic form in the variables wΔ, xa, and va
with the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ̂2ΓΛ̂
T
2 −

2∑
k=1

μkΨ
(k)
11 	 	

⎛⎜⎝ P
Q

ΛLTP

⎞⎟⎠
T

−
2∑

k=1

μkΨ
(k)
21 −

2∑
k=1

μkΨ
(k)
22 	

0

(
I 0

0 Γ−1/2

)⎛⎝C D 0

0 0
1

2
Λ−1

⎞⎠
⎛⎜⎝ P

Q
ΛLTP

⎞⎟⎠ − I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Multiplying this matrix on the left and right by diag

(
I, I,

(
I 0

0 Γ1/2

))
gives the matrix in the left-

hand side of (5.4). For Δ∈Δ, system (5.5) is immersed into the augmented system (5.6), (5.7).
Therefore, we have the inequality V̇ + |zd|2 − |vd|2 < 0 for system (5.5) for all Δ∈Δ, and its
generalized H∞ norm with the weight matrix γ−2R is smaller than 1. The proof of this theorem is
complete.

Remark 3. According to the lossless S-procedure under two quadratic constraints (Theorem 4.1
in [13]), if μ1Ψ

(1) + μ2Ψ
(2) > 0 for some μ1 and μ2 (this LMI can be directly solved with respect

to μ1 and μ2 after forming the particular matrix Ψ(1)), then the corresponding inequality (5.9) is a
sufficient and also necessary condition for the existence of the above function Va(xa) = xTa Pxa for
the augmented system.

Remark 4. In the control design procedure based on only experimental data or only a priori
information, due to the lossless S-procedure with one constraint, the conditions of Theorem 5.1
are sufficient and also necessary to fulfill inequality (5.8) along the trajectories of the augmented
system (5.6), (5.7).

We denote by γ∗, γa, and γp the minimum upper bounds for the performance index J(Θ) that
can be achieved using the control laws designed from experimental data and a priori information,
only from a priori information, and only from experimental data, respectively, by Theorem 5.1.
These bounds will be called guaranteed. The minimum values of γ for which inequalities (5.4) are
solvable under μk � 0, k = 1, 2, do not exceed, first, the minimum values of γ under μ1 ≡ 0 and
μ2 � 0 and, second, the minimum values of γ under μ1 � 0 and μ2 ≡ 0. Therefore, Theorem 5.1
directly leads to the inequality

γ∗ � min{γa, γp},
which explains the advantage of control laws based on both a priori information and experimental
data over those based on only a priori information or only experimental data. On the one hand,
given rough a priori information (i.e., when the radius ρ of the matrix sphere in (3.13) is large enough
and, accordingly, γa takes a high value), the index γ∗ may turn out to be small if the measurement
noise is not very significant (i.e., if the matrix ellipsoid Δp is small). On the other hand, if the
measurement noise turns out to be significant and, accordingly, γp is large (furthermore, if the
information matrix is singular and the matrix ellipse Δp is unbounded), then γ∗ can nevertheless
become small due to the smallness of the radii of the matrix sphere when using the a priori
information. These conclusions will be confirmed by the simulation results in Section 6.

6. AN ILLUSTRATIVE EXAMPLE: A NONLINEAR OSCILLATOR

Let us design an absolutely stabilizing control law for the discrete-time model

x(t+ 1) =

(
1 h
0 1− δh

)
x(t) +

(
0
h

)
u(t) +

(
0

−hω2

)
ϕ(y(t)) +

(
0
h

)
w(t),

y(t) = (1 0)x(t), z =

(
1 0
0 0

)
x+

(
0
0.1

)
u

of the nonlinear system

ψ̈ + δψ̇ + ω2ϕ(ψ) = u+ w,

where x = col(ψ, ψ̇) and the nonlinearity ϕ(ψ) satisfies condition (2.3) for α = −2/3π and β = 1.
When implementing the control design procedure for a continuous-time system, it is necessary to
calculate the derivatives, which entails an additional disturbance with bounds difficult to estimate in
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Fig. 2. The guaranteed values of the performance index under the robust controller based on experimental
data and a priori information and its values under the same controller for the real system as functions of the
disturbance level.

advance. In this sense, the discrete-time one is more preferable. In the experiment, it was assumed
that the real system is a nonlinear oscillator with ϕ(ψ) = sinψ, a damping coefficient of δ = 0.1,
and a frequency of ω2 = 1; for the nominal system, δ∗ = 0 and ω2∗ = 0.8. The step h = 0.2, the
weight matrix R = 0.1I, and the a priori uncertainty radius ρ = 0.05 were chosen. For each value
of the disturbance level d, ten measurements were carried out, i.e., N = 10. In the experiment, the
initial conditions and control were selected random in the interval [−1, 1] and the disturbance w(t)
random in the interval [−d, d]. Inequalities (5.3) were solved using the CVX package, with “a slight
departure from zero” to solve strict inequalities.

The figures demonstrate the simulation results obtained by averaging over 20 independent ex-
periments. The following conclusions can be drawn from Fig. 2. As the disturbance level grows,
the guaranteed value γ∗ of the performance index calculated from the experimental data and a
priori information increases, while remaining much smaller (under relatively small disturbance lev-
els) than its counterpart γa obtained based on only the a priori information. The explanation is
that the set Δp of all systems consistent with the experimental data expands when increasing the
disturbance level. Starting from some disturbance level (in the current example, approximately
d = 0.5), the set Δp includes the set Δa of all systems separated based on the a priori information;
therefore, with further increase of the disturbance level, γ∗ stops growing and γ∗ = γa. The dotted
curve in Fig. 2 corresponds to the values of the performance index for the real system (if it were
known) under the obtained robust controller based on the experimental data and a priori informa-
tion under different disturbance levels. According to the experiments, this value weakly depends on
the disturbance level and is close enough to the optimal value for the known system, i.e., γ2 ≈ 0.39.

The optimal controller and the corresponding value of the performance index for the real system
(if it were known), computed by solving the LMIs (4.13), are as follows:

u = −6.58x1 − 4.59x2, γ2 = 0.36.

The robust controller and the corresponding value of the performance index, computed only from
the a priori information using the LMIs (5.3) with μ1 = 0, are as follows:

u = −6.45x1 − 5.38x2, γ2a = 1.12.

The robust controller and the corresponding value of the performance index computed from the
a priori information and experimental data in one of the experiments with the disturbance level
d = 0.1 using the LMIs (5.3) with μ1 � 0 and μ2 � 0 are as follows:

u = −9.35x1 − 6.61x2, γ2∗ = 0.52.
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Fig. 3. The guaranteed values of the performance index under the robust controller based on experimental
data and a priori information with different radii of matrix spheres as functions of the disturbance level.

As shown by the experiment, if the robust control law is built only from experimental data
without a priori information (i.e., it is calculated using the LMIs (5.3) with μ2 = 0), then very
large guaranteed values of the performance index are observed even under relatively small distur-
bance levels. The explanation is that even for small random disturbances the ellipsoid Δp can be
large enough or even degenerate (i.e., unbounded). Thus, considering a priori information has a
regularizing effect on the robust control design procedure based on experimental data, even in the
case when there is no unique robust controller on the entire set Δa of systems identified from a
priori information.

Figure 3 illustrates how increasing the radius of the matrix sphere in the a priori information
affects the guaranteed value of the performance index under the robust controller obtained from
the a priori information and experimental data.

7. CONCLUSIONS

In this paper, we have developed a method for designing an absolutely stabilizing control law for
unknown Lurie systems that ensures the guaranteed value of the integral quadratic performance
index characterizing the closed-loop system transients under uncertain initial conditions. The
experimental data are not subject to the persistent excitation condition of the system, which is
necessary for its identifiability. The resulting LMIs for calculating the feedback parameters serve
to find the control laws based on only a priori information, only experimental data, and both a
priori information and experimental data. The simulation results of experiments with a nonlinear
oscillator have confirmed the advantage of control laws designed from experimental data and a
priori information over those obtained using only experimental data or only a priori information.
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APPENDIX

Proof of Lemma 3.1. We write inequality (3.5) as

ΔX̂X̂TΔT −X+X̂
TΔT −ΔX̂XT

+ +X+X
T
+ − Ω � 0.

With the change of variables, it becomes

Δ̂(1)Σ2Δ̂(1)T −X+X̂
(1)TΔ̂(1)T − Δ̂(1)X̂(1)XT

+ +X+X
T
+ − Ω � 0.
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Completing the square yields

[Δ̂(1) −X+X̂
(1)TΣ−2]Σ2[Δ̂(1) −X+X̂

(1)TΣ−2]T � Γ,

where Γ is given by (3.11). Due to the expression for X+ (3.9) and X̂(1)X̂(1)T = Σ2, we obtain
Γ = Ω+W (X̂(1)TΣ−2X̂(1) − I)WT. In view of (3.4), it follows that Γ � 0. Consider the matrix
norm of the residual, i.e., the function tr (X+ − Δ̂(1)X̂(1))T(X+ − Δ̂(1)X̂(1)). Equating its gradient
with respect to Δ̂(1) to zero, −2X+X̂

(1)T + 2Δ̂(1)X̂(1)X̂(1)T = 0, we finally get the least-squares

estimate Δ
(1)
LS of the unknown matrix Δ

(1)
real in (3.9) in the form Δ̂

(1)
LS = X+X̂

(1)TΣ−2.

Proof of Lemma 4.1. Due to ϕi(yi, t)[ϕi(yi, t) − yi] � 0, letting v = ϕ(y, t) in (4.6) yields the
inequality �V + |z|2 < 0 along the trajectories of system (4.4), (4.5). In other words, V̇ + |z|2 < 0
and, consequently, limt→∞ x(t) = 0. Since Y < γ2R−1, after summation and integration we finally
arrive at ‖z‖2 < γ2xT0 R

−1x0.
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